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ERRATA NO. 2

NACA TN 2494
LIFT AND MOMENT ON OSCILLATING TRIANGULAR AND
RELATED WINGS WITH SUPERSONIC EDGES
By Herbert C. Nelson

September 1951

Page 19, lines 4 and 3 from bottom: Replace the pu postmultiplying

F1 and Fo, respectively, under the integral signs by (u + Ei:)

Page 21, next to last line: Imsert a parenthesis after the term Eoone

Page 23, equation for Gos: The superscript "1/2" should be replaced
by superscript "3/2". . '

Page 24, line 4 from bottom: The premultiplier in the fourth term of the

0 lml/ 2 lml/ 2
equation for Hy ™~ should be ———— instead of i
3N 3N
Page 25, line 3: The second term in parentheses should be cvl" cosh™t %%

instead of vl" COSh-l :—l
v
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ERRATA NO. 1

Technical Note 2hok

LIFT AND MOMENT ON OSCILLATING TRIANGULAR AND
RELATED WINGS WITH SUPERSONIC EDGES
By Herbert C. Nelson

September 1951

Page 4, line 3: Replace the quantity M2 - 1 by dM? - 1.

Page 11, eqpation(ij) In the first velue for Hy for plan form D,

the term é& within the final parentheses should be E%.

Page 21: Correct equations (B3) as follows:

In line 2, the expression s = E>y should be a5Bny -

In lines 4, 6, 7, 13, 15, and 18, all primes appearing on the right-
hand side of these equations should be replaced by the superscript 1.

In line 1%, the sixth term of the equation for -2nM3’ should be
83H1o0 instead of ®3Hjo.

Page 22: In line 5, the "Mj2" within the bracketed expression should
be uM2 n
In line 7: The right-hand side of the equation for 83 should be
preceded by a minus sign.

Page 23: In lines 2, 3, and 4, the equations for &g, 87, and dg
spould be corrected as follows:

_ M 2 - olo - ]
8¢ = WEM (ko + 5) - oo - 3)

2
M 2
B = ——TEM (2o + 5) + 3{\
485207 2
_

58
4807/2

(20 + 5)
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ERRATA NO. 1

Page 23, next to last line: The superscript “'vp" should be the super-
seript "1/2."

Page 25, line 4: The equation for Ho31 should be corrected ag followe:

241/2
Ros' = = Fou” - ME&E + 0220 + 1)\ - 622
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NATTIONAT, ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL NOTE 249k

LTFT AND MOMENT ON OSCILLATING TRTANGULAR AND
RELATED WINGS WITH SUPERSONIC EDGES

By Herbert C. Nelson
SUMMARY

Expressions for the velocity potentiel and the 1lift and moment are
derived for thin, oscillating, "arrowhead" type wings with supersonic
edges moving at a constant supersonic speed. The triangular wing and
any one of the series of wings obtained from it by cutting its rearward
part so that the flow normal to the resulting trailing edges remains
supersonic are included in the term arrowhead type. Explicit results
for the 1ift and moment are given for the wings undergoing harmonic
pitching and vertical oscillations.

Closed expresslons for the velocity potential, section force and
moment coefficlents for any arrowhead wing, and total force and moment
coefficients for only the triangular or delta wing are developed explic~
itly to the third power of the frequency of oscillation. These expres-
slons may be sufficient for most practicel applications.

The wings considered are found to exhibit the possibility of nega-
tive damping 1ln torsion for certain ranges of Mach number and axis-of-
rotation position. A flgure showing the ranges of these parameters for
triangular wings is given herein.

INTRODUCTION

In high-speed-~aircraft design, & knowledge of the alr forces and
moments that act on various types of oscillating-wing plan forms is
often required. Such knowledge is useful in considering a number of
instability problems, among which are wing flutter and low-frequency
ingtability of the aircraft involving control-surface deflections. The
mein source of theoretical information has been the solution of the
linearized differential equation for compressible flow.

The problem of finding the air forces on an oscillating or steady
thin wing in supersonic flow is usually formulated in terms of the dig-
turbance velocity potentlal for the wing. The disturbance velocity

T m.
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potential 1s constructed by superposing solutions of the linearized
differential equation, corresponding to sources, doublets, or higher-
order singularities, in such a way as to sstisfy the boundary conditions
at the wing surface and at infinity. The linearized differential equa-
tion and its boundary conditions constitute the boundary-value problem :
for the velocity potential for the wing.

The present paper is concerned with the boundary-value problem for
the velocity potential for an apex-forward; thin, flat, oscillating,
triangular or related wing with supersonic sdges moving at-a constant
supersonic speed. According to reference 1, this problem may be clas-
gsified as "purely supersonic,” since the upper and lower surfaces of the
wing can be regarded as acting independently of one another, and is sat-
isfied by a surface distribution of sources with lacal strength propor-
tional to the local prescribed normal velocity at the wing surface.
Although reference 1 does hot expliclty trekt the oscillating triangular
wing, its general solution must be regarded as giving the velocity
potential for this wing in integral form. %he purpose of the present
paper 1s then to obtain an integrated form for the velocity potential,
from the integral-form solution of reference 1, for the particular case
of the oscillating triangular or related wing.

In & strict sense this integrated form &pplies to a semi-infinite
triangular plan form. But, since the wing wake is of no concern in the
present developmeht, the velocity potential may be considered to apply
to Bny one of the serles of wings obtained from a triangular wing with
supersonic edges by cutting the rearward part of thls wing in such a
manner that the flow normal to the resulting trailing edges remains
supersonic. All these wings, including the triangular wing, are hence-
forth referred to in general as arrowhead wings.

There &re seVeral other papers clogely &ssociated with the subject
being considered. In réferences 2 and 3 the treatment of oscillating,
finite, swept wings involved an integral form for the velocity potential
quite similar to that for the oscillating arrowhead wing., In refer-
ences 4 and 5; more directly, eXpressions for the total 1ift and moment
were given for the particular os¢illating arrowhead wing with super-
sonic edges known as the "wide" delta wing.

The present paper effectiveély includes the total fordes ahd moments
for the wide delta given in references 4 and 5. In addition the present
paper gives the forces and moments on any streamwise wing section for
not only the wide delta but also for the mofe general arrowhead wing.
The séction rather than the total forces and moments are desiraeble, for
example, in g strip flutter analysis that includes the wing-flutter mode
shape,

The velocity potential for the arrowhead wing does not appear to
be obtainable in terms of elementary functions {see references 1 and 4).

-
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The solution of this type of problem, therefore, is approximated by
various kinds of expansion. Thus in reference 4 the velocity potential
was expanded in a eeries of Bessel functions; whereas in reference 6,
in the treatment of the rectanguler wing, an expansion in powers of the
frequency of oscillation was employed. The frequency-expension method
ig utilized in this paper and only the first few terms of the velocity
potential and subsequent forces and moments are obtained. The first
few terms are considered adequate for a large class of practical appli-
cations. In the derivation of the velocity potential and the forces
and moments, the wings are assumed to be undergoing harmonic oscille-
tions in pitch and vertical translation.

SYMBOLS
¢ disturbance-velocity potential
X, ¥,Z . rectangular Cartesian coordinates
§) velocity of main stream
a velocity of sound in main stream

t time o

w(x,y,t) normal velocity at surface of wing st point (x,y)

Zy function defining vertical displacement of point (x,y)
of wing

Xg abscigsa of axis of rotation of wing section as shown in
figure 1

0 alr density in main stream

h vertical displacement of axis of rotation

ho maximum amplitude of verticsl displacement of axis of
rotation, positive downward '

a . angle of attack

ay meximum amplitude of angular displacement about axis of

rotetion, positive leading edge up

?..
Q.

time derivatives of h and «, respectively
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circular frequency of oscillation -

free-gtream Mach number (U/a)

rectangular Carteslan coordinates used to represent
location of sources in xy-plane

functions of ®, x, and M defined in equation (11)

slope of leading edge of wing ag shown in figure 1

charecteristic coordinates defined in appendix A

semichord of midspan wing section

nondimensional coordinates < = é%, v = %%, Ho = ——)

reduced frequency (bw/U)

locael-gurface pressure difference

— M%m
w = —é
Ug
ansbp
A
9= lim ¢
BA—>1
u,v
_1-pB)
T =TT e
o =A% -1
b
N,V,l-lo
k
Ap
P

gsection force per unit span on wing strip parallel to main
stream, positive downward

gsection moment per unit span on wing strip perallel to main
stream, teken about axis of rotation x5, positive leading
edge up *

components of section force and moment coefficients,
respectively, defined in equation (Bl); 1 = 1,2,3,L

total force on deltas wing, positive downward

total moment-on delta wing about axls of rotation x
posltive leading edge up - = =
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fi’ﬁi components of total force and moment coefficients,
respectively, defined in equation (B4); 1 = 1,2,3,L

E . ,F
Gmn’Hmn’ functions of u;, B, end Vv defined in equation (B2)
mn’ T mn
a
1’213} Punctions of M, A, and o defined in equation (B3)
71594
1 distance to point at which extended trailing edge of plan
form D, figure 3, intersects x-axis
8 ' gsemispan of wing

FORMULATION OF PROBLEM

Consider uniform supersonic flow past & thin, flat, arrowhead type
wing as shown in figure 1 (with its leading edges outside the Mach cone
generated by the nose of the wing). The wing is referred to a coordinate
system fixed in space and 1s assumed to be creating small disturbances
in the main stream flowing past. Then, if the undisturbed stream
velocity 1s in the direction of the positive x-axis and is of magni-
tude U, the equation satisfied by the disturbance velocity potential
for the wing is

é@g + U %)2525 = 78 . (1)

The wing is assumed to be performing oscillations of small empli-
tude about its own undisturbed position, the plene Z = 0. The boundary
condition to be satisfied at the wing surface is then

@g)h;o R gém + ;i-n-l (2)

where Zp 1s the vertical displacement of a point (x,y) of the wing.
Note that this boundary conditlon 1s evalusted, in accordance with
small-disturbance linearized theory, at the xy-projection of the wing
rather than at the wing itself. The additional boundary conditions,

that only the wing can support a pressure difference and that the sources
of disturbance must not be felt ahead of their respective Mach cones,

are automatically satisfied by the type of source synthesis to be
employed in the solutions.
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After the boundary-value problem is solved for the velocity
potential ¢, the pressure on elther wing surface may be found by means -
of a linesrized form of Bernoulli's equation -

p = -p(§%_+ U %) (3)

where p 1s the density in the undisturbed -stream.

For the present problem of e wing performing small harmonic tor-
sional oscillations of amplitude oy about some spanwlse axis xg

and small harmonic vertical tranglations of amplitude hg (see
fig. 1(b)), the equation for 2Z, is

Zp =-h + (x - xo)a =Eo +_(x {xo)a;le

where @ is the frequency of oscillation. Substitution of equation (4)
into equation (2) gives- S

1wt (%)

w(x,y,t) = h + Uz + (x - xo)& (5)

Since equation (1) is linear, the velocity potential satisfying equa~ .
tions (1) end (5) may be regarded as the sum of three potentisls, each .
being associated with one of the terms on the right-hand side of equa-

tion (5). Thus the potential is obtained in the form

§ =0y +d +d: e

Thickness effects are considered negligible and, as a result,
the velocity potentials in equation (6) are assoclated only with lift——
and are antisymmetrical with respect to the plene Z = 0. Thus only
one surface of the projected wing need be considered, The top surface
(Z = +0) is chosen in this analysis and, since the antisymmetrical
potential is simply opposite in sign on the bottom surface, the pres-
gure difference supported by the wing is obtained by means of equa-

tion (3) as
Ap = .-_2p<g% +U %?;) (7)
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EQUATIONS FOR VELOCITY POTENTIAL

Integral Form

The boundary-value problem for the arrowhead wing with supersonic
edges, discussed previously, is similar to that for the wing of infinite
span treated in reference 1. The problem in reference 1 is shown to be
satisfied by & distribution or superposition of sources over the upper
wing surface. Thus the velocity potential for the arrowhead wing,
irrespective of the type of time variation, is

B(%,5,40,%) = - —Q-l;f/; O ) il ) I

R

where w(&,n) represents the surface variation of source strength and

- M(x - &) F ) .
aBe ' ' o

M,2

R =\(x - £)° - g%y - 1)°

The region of integration S, in equation (8), is the part of the wing
(in En-plane) cut out by the reflected Mach cone opening upstream of
the point (x,y,+0) as shown by the shaded area in figure 2.

For the present problem of the wing performing smell harmonic -
torsionel and vertical oscillations, the time variation of source
strength is given by
w(t) = e10F

Thus, as shown in reference 1, equation (8) takes the form -

#(x,7,+0,t) = - é?ﬂ; w(é’") e-1(x-E)o co‘s‘(c‘u %)dn at (9)

where . . — -
ot _ o
ap®  up®

¢V} =
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and the values of . w(€,n) for the harmonic case from equation (5) are:

For h,
W) = g = iUf;ZB ho
For Ua, ’ . -
w(€,m) = Uty
For afx - %),

w(k,n) = iUi?B (& - xo)ao

For certain parts of the region of the wing (shaded in fig. 2) to
which equation (9) applies, the integration can be carried out as in
the case of the infinite wing considered in reference 1. However, the
entire potential ¢ does not appear to be obtainable in terms of known
functions. Previous mention of this point was made in the introduction.
In order to give consistent treatment to the entire region of integra-
tion, the integrand of equation (9) may be expanded in Maclaurin's
gseries with respect to ®, with the result that each term of the expan-
gion can be readily integrated. Thus equation (9) is used in the
following form:

iast-- m-2n 2n
_ (&,1) E £) R
¢(X:Y)+O:t) = - 'e";—fs LA R me (2n) (m - 2n)! ('ﬁ) dn dt

n=0

(10)

where [@/é] denotes the integral part of m/2.

Integrated Form

The velocity potential to the third power of & 1s considered
sufficlent for a large number of practical applicaetions. Thus equa-
tion (102 to the third power of ®, with any & that may come

from w(f€,n,t) temporarily neglected, is
Bx,7,40,8) = - o [] wlm)ag &+ a1 & + 2p &
X, ¥yT050) = = = SWEm Bogteaigtesg t

3 :
83 % + boR + blﬁR)dq at (11)
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where

D
o=1-tmx -T2 1B

al=im+a)2x-ia%3x2
TP . &3
az--?+ ?x
a, = -1 Eﬁ'
3-8
ol o
b= - —=+1—x
O @ oo
b =1 B
1 oM

The question may be raised at this point as to whether equation (11)
gtill represents a solution of the boundary-value problem under discus-
sion., With regard to this question, it can be shown that, when all the
terms involving ® wup to a given power are taken into account the dif-
ferential equation (1) is satisfied to this power. The boundary condi-
tion of tangential flow, equation (5), is satisfied exactly, regardless
of the order of ® coneldered.

Putting the values of w(&,n) given in equation (9) into equa-
tion (11) and performing the indicated surface integration (over the
shaded region in fig. 2) ylelds the following forms for the velocity
potentials in equation (6):

'\
' 5 2 2
.__h ’ 2 _p2.2 -1 x + B\ -1 x - B5M
¢h_ jTEx.By + By cos 7—1H>»x+y+_32cos 7__1)-B_>~X'Yi|
h
=';Fl(x.'Y)

>
¢ == Fl(x)Y) (12)

- -1 X + B ;\' -1 X - B >\'
¢0. = - [\, -B y2 + Dy cos B—(ﬁy + D2 cos m
XOFl(x;ﬂ .
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The coefficlents 4, By, By, C, Dy, and Dy, are given in appendix A.

In order to perform the integrations that led to the results represented
by equation (12), the use of characteristic coordinates (Mach lines in
fig. 2) was found convenient. Reasons for using these coordinates are
given in appendix A, where a brief account—of the derivation of equa-
tion (12) is presented. oo T

In the limiting case where the Mach lines coincide with the leading
edges of the wing, that is, when P\ = 1, equations (12) teke the fol-
lowing form: ) .

% = - Sa\h® - g7 )

. i
Vg = - A - B - (13)
P = - %(Cl - onl) £ - g% 3

The coefficients Al and Cl and the derivation of equation (13) are
also given in appendix A.

FORCES AND MOMENTS

The preceding result for the velocity potential, equation (12), is
now used to obtain the forces and moments on any one of & series of
wings generally referred to herein as arrowhead type. As stated in
the introduction, the wings beilng considered are those that may be
formed from the delta or triangular wing by cutting the rearward part
of this wing In such a manner that the resulting trailing edges lie
ahead of the Mach cones emenating from their foremost pointa. Sketches
of several wing plan forms having the aforementioned characteristics are
phown in figure 3.

The forces and moments acting on e wing section, such as section y
of.figure 1, are derived in general form, that is, in the form applicable
to any of the aforementioned wings. These forces and moments are useful,
for example, in & strip flutter analysls. Total forces and moments are
also derived, but only for the delte wing. The damping part of the
total moment due to ag 1s used 1n & study of the possible logs of
aerodynemic damping (loss indicates that single-degree torsional flutter
is possible) of an oscillating delta wing, which infers the same pos-
sibility with regard to the other wings congidered. . '
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In deriving the expressions for the section and total force and
moment coefficients, it is convenient to employ the variables g, Vs
and upp as the nondimensional quantities, obtained by dividing the
variables x, y, and xg by the chord 2b of the midspan section of

the wing, and to introduce the reduced frequency k = %?.

Section Forces and Moments

The local pressure differencé between the upper and lower surfaces
of the wing is glven by means of equation (7) as

Ap = -2p<§% + é%.%%) (1k)

The expression for the section force, positive downward, is therefore
M1
P=-2b Ap dp _ (15)
V/A

and the section moment, positive nose up, about the arbitrary axis of
rotation x = x5 1s

e = 0 [ ;i (1 - o) 20 an (16)

The limit of integration pq in equations (15) and (16) has the fol=
lowing velues with respect to the different plan forms shown in figure 3:

'\
For plan form 4,
P-l=l
For plan form B,
Vv
ul—l'E
For plan form C,
By = 1+ %
> (17)
For plan form D,
m
bo=1+-Y for 0Sy S L2 (-T-->
1 my m + mp\2b
_ 1 v Mmoo /1 8
ML= 5% Ty T ml+m2<2'b- ) SVE®
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After equation (12) is substituted into equations (15) and (16) and
the indicated integrations are performed, the results can be written as

o _uprgkeeith;_Q (Ll + :LLQ) + aO(L3 + iL@ (18)

and

_upbszzem’tl})(ml + M) + g (Mg + iM;)' (19)

In equations (18) and (19) the reduced freqiency k, on which the Li's.
end M;'s are dependent; is related to ® and @ in the following
manner:

My

2

o’
w

e
k=%

o

)

A brief account of the derivation of and expressions for the force and
moment—coefficients L; and My (where 1 = 1,2,3,L4) appearing in
equations (18) and (19) is glven in eppendix B.

In equations (18) and (19) the coefficients Iy + ilp , My + iMp
and L3 + 1Ly , M3 + 1My are the section 1lift and moment coefficients

asgociated with vertical translation and rotation, respectively. The
real componentof Iy + 1Lp , for example, is in phase with the dis-
placement hy and the imeginary part is 90° out of phase with this
displacement. Similar interpretations can be given to the remaining
components. The imaglnary part of each of the coefficients is propor-
tional to the aerodynemic damping force or moment associated with the
respective motion.

Total Forces and Moments for Delta Wing

The expression for the total force, positive downward, on plan
form A of figure 3 is

_ o pM Al — .
P = -8 f f Ap du dv (20)
0 J v/
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The total moment, positive nose up, about the arbitrary axis of rota-
tion x = x5 1is -

» pl
¥ - -16b3f0 /;/}h ap(x - Xo) dn dv (21)

After equation (12) is substituted into equations (20) and (21)
and the indicated integrations are performed, the results can be written as
(using barred letters throughout to designate total forces and moments)

-BQb%QKQeMtlj;:-(fl + ife) + c.o('L'3 + if;l—l (22)

P

and

N, -pr3U2k2ei‘Dt|:hT?-(ﬁl + i@ + ao(b_&3. + iﬁlﬂ (23)

The derivation of the total force and moment coefficients fi and ﬁi
(1 = 1,2,3,4) 15 also given in appendix B.

SOME CALCULATIONS AND DISCUSSION

It may be of interest to the reader to examine the spanwise dis-
tributions of the various components of the section 1lift and moment
coefficients for a particular case. Thus, the components of equa-
tions (18) and (19), given more fully in equation (Bl), have been
evaluated at different spanwise positions y for plan form A of fig-
ure 3 for the following set of conditions: A =3, ug = 0.5, o
M2 = 1.75, and k = 0.0k, These sample results are plotted as functions
of the span position in figure 4. The spanwise variations of the
section-force components are shown in figure 4(a) and the corresponding
variations of the section-moment coefficients in figure U(D).

The components of the total force and moment coefficients (given by
equation (B4)) have also been evaluated for the previous set of condi-
tions. The results, after being referred to the nondimensional span of
the wing 2\, are represented by dashed lines in figure 4. As should
be the case, the areas under the dashed lines are equel to those under -
the respective section-component curves.

As a result of the linear dependence of the total force and moment
coefficlents on the, semiapex angle of the wing, as may be noted in
equation (B4), the average ordinastes of the distributiones given in
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figure 4 will not change if the apex angle ig changed. Only the shapes
of the section force. or moment distributions will be affected by such a
varitation in angle.

In the example plotted, the total component of moment coeffi-
clent Mq is negative. This term would therefore not contribute to
the aerodynamic damping but would act as a source of energy for the
oscillating system. This result is significant since 1t indicates the
pogsibility of single-degree torsional flutter,

The wing plan forme discussed in this paper exhibit the possibility
of loss of aerodynamic damping in torsion for certein ranges of Mach num-
ber M and axis~of=rotation location pg. This possibility is indi- '
cated, as mentioned in the previous paragraph, by the negative value of
the torsilonal demping-moment component M), in the exsmple given. Since
a wing oscilletes as a rigld body at a felrly low frequency of oscilla-
tion, the main results of the loss-of-damping phenomenon can be obtained
by meinteining M)y +to the order of 1/k only. Thus, there is obtaired
for plan form A of figure 3 the following result from equation (BA4):

M, = —LEE(Me - 1)“02 - hpo(hMQ - 5) + 3(2° - ?ﬂ (24)

387K

_In general, torsional stability depends on the sign and megnitude
of Mj. Positive values of- ‘M), indicate stability and negative values
indicate possible instebility. The borderline case is thus given
by Mu : '

The ranges of-values of-Mach number M and axis of rotation y
for which M), in equation (24) vanishes, are shown in figure 5. Ozgy
one curve 1s obtained for all delta wings with supersonic edges, that
ig, PBA 2 1, because Mh ig dependent on A for masgnitude only, as
may be noted in equation (24). The reglon ingide the curve in figure 5
is the region of possible instability. For convenlence, a second
crdinate is given in figure 5 showing the values of—A below which the
leading edges become subsonic. With the aid of this second ordinate it
may be seen that a delta wing with e semivertex angle of h5 1is the
narrowest triangular wing that may show a torsional instability and yet
retain the characteristic BA 2 1 because the uppermost part of the
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curve in the figure corresponds to a value of A =1 when BA = 1.
For a narrower wing to have at least sonic edges, it must be moving at
& Mach number which would place it in the stable region of figure 5.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronsutics
Langley Fleld, Va., July 11, 1951
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APPENDIX A
COEFFICIENTS OF VELOCITY-POTENTIAI. EQUATIONS

A derivation of equations (12) and (13) is given briefly here.

The surface integral represented by equation (11) when written in
terms of the characteristic coordinates u,v becomes

it n o up n
= - e __ B (u + V) du dv
¢ " {;io LA jzrl ful e V(uo - u)(vo - v) '

+2
2 %_/;12 fue w(u,v)by(u + )& \[(uo - u)(vo - v) du dﬂ (A1)

Y
whc-;re
u =§M§(§ - Bn)
u =§M§ (x - By)
- ’2% (& + Bn)

vo=§—B-(x+By)

The 1limits of integration in equation (A1) , from the characteristic
coordinates previously defined and from figure 2, are:

Reglon Uy Us Vi Vo
I 0 uO 0 vo
II 1 v u u 0 (A2)
y 7o
IIT v 0 0 Vo
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where

Putting the appropriate values of w(u,v) and the limits of integration
given in equation (A2) into equation (Al) and performing the indicated
integrations, and then reverting to xy-coordinates, yields the potentlals
in the forms given in equation (12). Retaining only those terms
agsgoclated with h or o that involve @ wup to the third power ylelds
the following velues for the coefficients in equation (12):

A = i—-c—+)‘x2mE42hc+3)+c]+)“Bay2 (3M2+c) W
;:;22@2180 +3lc+15)+3c(5cr+3:‘
i—%z%m—slga(38cr+h5)+3c(hc+9ﬂ

A2 B

L (M+y) -1 (Xx+y)2- ’32“_"2 @2(2&+3)+
7 3k T - (43)

] (x + 3)3 + 1—077—@2(20 +.5) + 3ﬂ (XX+y)l‘

Bl(xJ y)

By(x,¥) = By(x,-y)

2 oo
C = %x- - i )‘XQw(cr +3) -1 Ufw ;1}:;\34203 @2(202 + 190 + -15) +

o(o + 3] Bzxy%alzde(e& + U5) + 9%
23

S

Continued on next page
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2 . )
. AB
D (x,y) = - —2%—(XX +y) - ——71(Xx +y) + (Xx + y)
1 03 e 63 2 203
) _
1 ;3""12‘(xx + y)° 5‘575(2“ +3)(ax + ¥)3 4

———5—77—{%M9 (Lo + 5) - o(o - 3:] AX 4+ y)3

—%@EME(EU +5) + 3] (Ax + y)3
g

%%25@0 ¢ 5) 0+ )
)

D'Q(x,.')’) = Dl(X, =y)

where
g = pAS -1

For the case in which the velocity compotients normsl to the

\ (A3)

leading edges are sonic or in which the Mach lines toincide with these
edges (that is, when BA =1, 7y =0, or & = 0), 1t may be noted from

equatioh (AE) and figure 2 that—regions II and III no loager exist.
Therefore, the potentisl in this case 1s determined by integration

over region I only. The coefficlents of equation (13) are thus found

to be:

A w-ga{ -1 -’;@- -9%;2— 5(x2 - p2y2) + MQ(TXQ * esgy?)], +
3@3 x2= 2 + x2+ 2
' EIOMQE%( ° yz) M2(3 -26 VBEI}

r (Ak)

51 B A - 2R ) (s -]

-

The use of characteristic coordinates leads to very simple expressions

for the limits of integration given in equation (Azg. In eddition,
their use simplifies the derivation of equation (AlL).
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APPENDIX B

FORCE AND MOMENT COEFFICTIENTS
Section Force and Moment Coefficients
The coefficlents Ly and My (where 1 = 1,2,3,l4) are obtained
by substituting equation (12) into equations (15) and (16) and grouping
the results in the form given in equations (18) and (19). These

coefficients are therefore defined as follows:

L' + 1Ly ~

Ly + il, =
1
L3 + iL}-l— = L3' +iL’+'— (E + 2‘-10) (Ll' + iLa')
_ > (B1)
M+ oAM= M+ MY - EpO(Ll' + iL2'>
1
My o+ 1 = Myt o+ D - 2pp(Lgt 4 ATy - (E * Euo)(Ml +1 )J
where
— . -
1 1 i
Ll' + iLz' = 'g EL N Fl(au,a\/)du - E F1(2u1,2v)

L.

Py 1 N
L3' + i)' =-5= 2_/1/)» Fp(2p,2v)du - £ Fg(eul-,ev)

— —
1 1 1
Myt Myt = -k Fi(2u,2V)u du - ¢ 209Fq (201,2V)
B S0 . -

— iy .
Myt + Myt = -3 hf/x Fo(2p,2v)u du - 3 207Fp(2u7,2v)
| TV

—

In equations (Bl) the quantity Fy(2u,2v) 1s obtained from the quan-
tity Fi(x,y), defined in comnection with equation (12), by replacing x
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by 2, y by 2v, and regarding the & associated with the coeffi-
cients A, By, and By, in Fq(x,y) as @' where

The quantity F2(2u,2V) is obtained in a similar manner from the
expression .

= _ p2. 2 -1 x + BeA -1 x - B&A
Fe(x,y) = C Vx? Bey2e—+ D; cos ETKEE:H§Y + Dy cog ETXE_:-%Y

the right-hand side of which is recognized as part of ¢é in
equation (12).

Consider now the following general definitions, particular forms
of which are contained in L; and My (i =1,2,3,k):

By, = om+n+1 Vmuln\/H12 N - - ~

F & 2e+m+n ( va)e m, AR -1 Hq + B2Xv
m - B) (M + V) cos T gy +

2, .
-1 M1 - BTAvV
(“52XV)e .Lllm(Xl.Ll - V)n cos 1 BE-TU-lﬁ

i (B2)
6 o2 m MMoa 355 (

mn ' v/A

. . .,
e _ .e+mintl 2...\e L m n -1 p+ By
Hﬁn =2 [}B XN) \/: \ wo(A + v)" cos 80w T V) du +

P

M1
e m n -1l u-pB
(-B%y) fv/x w(Ap - v)" cos B0m = VT

-/

With the aid of-equation (B2), the L;' and M;' (1 = 1,2,3,4) of
equation (Bl) may be written as

ul
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-21'le !

-2y

-2nL,"'

-2:TL)+'

-2n; !

-2nMy !

-211’M3 !

(alEOl + ByHp1O + BaFozo) + (aec'oe + aglpg + apfgy +

01 0 0
-B1For ¥ * (@1%1 - Egp - azBag + BoHgoo = B3Fg3 )k

0

1
71801 * 7oFgp + V3B + ByHyy + B4 "+
0 0 0

- E +8Fo+8F '+ 3. F O_Zl:+ 7,G + 7.G -
(7101 1711 2'01 3%02 /& 2%02 T 73%0

0 0 0 0
E - E + 3. H + 3 H -8 -3F ' -8F )ﬂ
"y%03 " Tser T Oytip 5703 613 7 03 8 ol

E‘l(Eoe - G01) "By B2(‘1‘"120 - 1{020)] * E2G03 ¥

21

aglp; + a;_,_(Eo)_,_ - Go3) + a5(E22 - Gal) + Byfyg +

Bu(Fluo - Houoﬂ ¥

B1(5[010 - Fllo)% + E‘lGOZ + “2(%2 - Eoé) + cL3(G20 - E21) *
Bofi1p” + 33(3030 - F13° Hk

71002 + 72(Eo3 - Goe) * 73(E2i - Geo) + 885 + 8oy +
33Hp + Sh(ngo - leo) + 85 (Fl3° - Ho3°)

0 0
‘;1 (G01 - Eoe) * 51<Hll - Fo1 ) * 82(’*5[01' - Fll') *

0 oy 1
53 (Hoz - Fro )| £+ | 72803 * 73021 + 71+(Go3 - th) +

~(B3)

0 0 0 0
75 <G21 - Bpp + BHpo” + BsHy30 + Bg (H13 - Fo3 ) +
7

5 (Ho3' - F13'> * 58(Hol+o - Flho)] k
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where
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MN[0
Qn = - M- + ¢
3 65202( )
h
T (180 + 310 + 15) + 30(5a + 3]
T28 c
ag = l: 380 + 1+5) + 30(110 + 9]
72[3 03
! M2 2 '
= ,0_175 3 W M (20 + 3) + 0]
Ya) 15 f2es + 5) + 30
--;WE 34=WM2(20+5)+30
2 L
a 73 --0'21
= - }ixe(c + 3) 7)4‘ = -_’-I-_EE 20 + 190 + 15) + U(U + 3]
3p7c

M2(26c + ﬁ5) + 9a
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1 M2 . _
81 = -0'75 85 = 6_6%(20' + 3)
85 = By 56=W1&M2(4q+3)-0(0-3il
¢ |
.BEX M2 f
53=m§ 57=W1ME(26+3)+30]

The coefficients in eguation (B3), that is, w«y, By, 71, and &y,
originate, respectively, from the coefficients” A, By or By, G,

and Dy of Dy defined in appenidix A. The quantities Ep, and Fp,

contained in equation (B3) are ersily determined from equation (B2).
The quantitles Gp, end Hﬁn’ however, are determined by integration,

as indicated in equation (B2). The integral results that are required
in equation (B3) aret

Go1p = %(ulg BE 2)3/2

| 3/2 1/2 u
G'02 = 2Eﬂl<u12 - BEVE) + B%eul(ul - BQVE) - Bh\)h’ cosh'l B_-t-]

Go3 = 31-%(3u 2 4 22y 2)( « B2y 2)1/2

v : T
| BVEEI( 2 Bev2> 2 422 el B—B

.2 . _ /2
324 ) 3
Go1 = =3 (“12 . BQVE)

(9]
n
Q

]




2k _ NACA TN 249k

1/2 o -
0 _ 1. 0 Uk 2 a1t S
Bor =23 Foo - —x —vcosh T z7 _

1 3251/2 _ o : . . .
HOQO = ?).\- FOBO - —3—" Ve\lulz - B2V2 . _

o_.1 0 1/2 2.2 2.2 -11
Hop3™ = 1% Fou~ - 3K A5y “l -~ B%v + v 30 + 5)cosh 2

1/2 L
oy = 313; FosO - 25?; E}l‘(% +5) + X3u12vﬂ \/ulz - B2y2

0 1 0. 1 0 8c1/2 W22 . g2 B
Bip" =-gsfo3 *axFie - TVl - B .

1/2 T
H = - F + =3 F - |5>~ VER \’u - B Ve + .
12 102 Oh 3% 713 32 1

L 1t
v (50 + 3)cosh B—gl

1/2
160 5 l_(__ezc + 25))»\;1L +

15A

o} 1 o, 1 0
Hix" =-—F5 Fo5~ + Fiy° -
3 2002 5 TIn
V Ll]ﬂ H]_E - 52'\22

o 1 .0 1 _0.1_0 kl2loo 22
By =3 for "55713 T e T [V i *
4 -1t
v (o + 3)cosh” B\]
/2

o 1 1 320
= —x Fo5 - Fiy + - i ® 4
H22 30 )»3 05 6n — 2 111- 3N 3 157&3 1

g + 5)] \farZ - 5B o
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1_ 1 1 1/2,2 2,/2 2.2
HOl EX F02 ~ 8o / BENY B~ - Bey

2 2 2
1 B 0 28 0 A 0
Hppw =~y Fou * 737 13 - B my -
2 1/2 v
——-—-——1653i (keveul \/“12 -~ ﬁzve + v)"‘cosh"l E—é)
2 1/2 2

As may be suspected from the complicated results generically represented
by Epn Funs Gon s and Hp,, the section 1ift and moment coefficients

are not simplified to any large extent by algebralc combination. The
1ift and moment coefficients, as given in equstion (B3), are in a form
which is perhaps better for numerical evaluation than a combined form.

Some cautionary remarks are in order with regard to equations (B1)
and (B3). In evaluating the coefficients Ly eand My (where 1 =3 ,h),
the terms involving k2 ghould be ignored because the 1ift and moment
coefficients associated with a have been treated completely only to
the seme order as those asgsoclated with h/U. In equation (B3) only
real quantities are admitted. Therefore, the following restrictions

must be noted (for L %—.)

M1
ula - 32\’2 =0
-1 Hy + BQXN_

Rl O B

Hy - BEAY

cos m:ﬂ.

-1 "1
cosh i 0
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Total Force and Moment Coefficients

As indicated in equations (20) and (21), the total lift and moment
coefficients Ljy and M3 for the delta wing may be obtained from the
previously derived L; and My Dby setting Mp =1 in Ly and My and
integrating the resulting expressions over the span of the wing. The
results of the spanwise integration combine readily to yield expressions
which are much simpler than the corresponding ones in the section-
coefficient case. Without further detail, the total force and moment
coefficients are:

fl + i-f:z = fl' + ii_zr ' . ™~

-— - -t =t i - 1 =1
L3+1Lh=L3 +1Lh - <—+2uo>(L +iL2>

My o+ 1M, = ' o+ 1My - euo(il' + ifé')

My + iMy, = Mg' + 1M’

]
5
—
=
(U]
+
[N
=
=
g
i
N
E L
+
o
S
T
=l
'.—l
+
L\

where

L7383 1sp7
= ' _ A M
o =g
T 2

3 7 3g3
I

b7 3pk 565
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R )
= - Tk

Mo = 3k =80

= ' _ 16\

3 1563

— 1 o 2t

M, ==t.Zxk

OBk 55

If equations (22) and (23) had been put in the conventional form,

L = CLqS
M= CMch

vhere S 1is the area of the wing (for the triangle S = Wb2A), q is
the dynamic pressure, and c¢ 1s the wing chord, then the 1ift and
moment coefficients Cp, and CM, obtained from equation (BA4), would
be independent of A. This result is rather remarkable since it means
that the 1ift and moment coefficients for a triangular wing with
supersonic edges are independent of the vertex angle of the triangle.
The seme observation was previously noted in reference L.
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x:% X = Xg x=2b
I~ | ,
T T

(b) Section y.

Figure l.- Coordinate system and the two degrees of freedom o« and h.



30

NACA TN 249k

1Y

Figure 2.- Regions-of integration for the velocity potential,



Plan form A

Plan form B _ Plan form D

N
Vo

W2 nlr2p)"
h S ]

Figure 3.- Different plan forms for which the force equation (18) and the

moment equation (19) apply.
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(a) Lift force.

Figure L4.- Spanwise distribution of components of 1lift force and moment
coefficlents for ug = 0.5, A = \/3, M2 = 1,75, and k = 0.0k,
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My

(b) Moment.

Figure 4.- Concluded.
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the aerodynamic torsional dsmping moment vanishes for wide delta wings.
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